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ADDING HANDLES TO NADIRASHVILI’S
SURFACES

F.J. LÓPEZ, F. MARTÍN & S. MORALES

Abstract
We construct complete bounded minimal surfaces in R3 with arbitrary topo-
logical genus.

1. Introduction

The so called Calabi-Yau problem, which deals with the existence of
complete nonflat minimal surfaces with bounded coordinate functions,
has been the instigator of many interesting articles on the theory of
minimal surfaces in R

3 over the last few decades.
Two articles, in particular, have made very important, if not funda-

mental, contributions. The first one was by L.P. Jorge and F. Xavier
[2], who constructed examples in a slab. The second one was by N.
Nadirashvili [5], who recently produced examples contained in a ball.
In both cases, the key step was the ingenious use of Runge’s classical
theorem.

In respect to complete bounded minimal surfaces, an open question
still remains as to whether information about their geometry can be
obtained [8]. One approach to this problem consists of deciding whether
Nadirashvili’s surfaces with nontrivial topology exist or not. The first
such surface, with the topology of a cylinder, was obtained in [4].

However, in general, constructing examples with nontrivial topology
is a difficult matter because of the period conditions. This problem has
been dealt with in depth over the last few years for several families of
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minimal surfaces, including the parabolic case [7] and the hyperbolic
one [3].

In this paper, we have proved the following theorem:

Theorem. For any genus σ ≥ 1, there exists a complete
bounded minimal surface in R

3 with genus σ and one end.

Our procedure works as follows:
Firstly, we deform the Weierstrass data of a given minimal surface of

genus σ and nonempty boundary, σ ≥ 1. In order to do this, we use the
Implicit Function Theorem and Runge’s theorem, in such a way that
the resulting surface has no periods. The second step consists of adapt-
ing Nadirashvili’s techniques to this more general setting of nontrivial
topology. Hence, our deformation increases the intrinsic diameter, but
it controls the Euclidean diameter in R

3. In this way we construct a
sequence of genus σ minimal sufaces contained in a fixed ball, which
converges to a complete genus σ minimal surface lying in the same ball.

The paper is structured as follows. In Section 2 we introduce all
the notation and concepts that we have used throughout the paper.
Section 3 sets out the principal results in this paper: two lemmas and
the main theorem. In this section, the main theorem has been proved
by using Lemma 2. The proof of this lemma is quite technical and has
been given in Section 5. Lemma 1 is a tool for getting Lemma 2 and
has been proved in Section 4.

2. Background and notation

Let N and dŝ2 be a Riemann surface and a Riemannian conformal
metric on N , respectively. Given a curve α in N , by length(α, dŝ) we
mean the length of α with the metric dŝ2. Given a subset W ⊂ N , we
define:

• dist(dŝ,W )(p, q) = inf{length(α, dŝ) |α : [0, 1]→W, α(0) = p, α(1)
= q}, for p, q ∈W ,

• dist(dŝ,W )(T1, T2) = inf{dist(dŝ,W )(p, q) : p ∈ T1, q ∈ T2}, for
T1, T2 ⊂W ,

• diamdŝ(W ) = sup{dist(dŝ,W )(p, q) : p, q ∈W}.
The concepts of (multiplicative) divisor on N , integral divisor on

N , and the natural partial ordering, ≥, on divisors can be found in [1].
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Let ω be a meromorphic function or 1-form on N . Let W ⊂ N and
suppose that ω has a finite number of zeroes, z1, . . . , zn, and a finite
number of poles, p1, . . . , pn, in W . We denote by (ω|W )0 = z1 . . . zn,
(ω|W )∞ = p1 . . . pn, and (ω|W ) = (ω|W )0/(ω|W )∞, the zero divisor, the
polar divisor, and the divisor of ω on W , respectively. When W = N ,
we simply write (ω), (ω)0, and (ω)∞, respectively.

Throughout this paper, β1, . . . , β2σ+1 will denote a sequence of pair-
wise distinct complex numbers, andM will be the algebraic hyperelliptic
curve of genus σ given by:

M =

{
(z, w) ∈ C

2 : w2 =
2σ+1∏
i=1

(z − βi)

}
.

Let A(z, w) = (z,−w) be the hyperelliptic involution on M , and label
∞ = (∞,∞) and M = M − {∞}. If h : Ω ⊂ C → C is a meromorphic
function, we do not distinguish between h and h◦ z : z−1(Ω) ⊂M → C.

Given D ⊂ M a domain, we will say that a function, or a 1-form,
is harmonic, holomorphic, meromophic, ... on D, if it is harmonic,
holomorphic, meromorphic, ... on a domain containing D.

Let Φ = (Φ1,Φ2,Φ3) be the Weierstrass representation of a minimal
immersion

X : D → R
3

whereD ⊂M is a domain invariant under A. If A∗Φ = −Φ, then we can
write Φj = ϕj(z)dzw , where ϕj is a holomorphic funtion on z(D) ⊂ C,

j = 1, 2, 3. We will denote ϕ
def= (ϕ1, ϕ2, ϕ3).

With this notation, if we write the Riemannian metric induced by
X as ds2X = λ2X‖dzw ‖2, then

λX = 1√
2
‖ϕ‖ = 1√

2

√
|ϕ1|2 + |ϕ2|2 + |ϕ3|2.(1)

For the sake of simplicity, given W ⊂ M, p, q ∈ W and T ⊂ W, we
write dist(X,W )(p, q) and dist(X,W )(p, T ) instead of dist(dsX ,W )(p, q) and
dist(dsX ,W )(p, T ), respectively.

Let P be a simple closed polygonal curve in C. We denote Int(P ) as
the bounded connected component of C\P. Given ξ > 0, small enough,
we define P ξ as the parallel polygonal curve in Int(P ), satisfying that the
distance between parallel sides is equal to ξ. Whenever we write P ξ in
the paper we are assuming that ξ is small enough to define the polygon
properly. If D = z−1(Int(P )) ⊂M , then we write Dξ = z−1(Int(P ξ)).
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3. The main theorem

In order to get the main theorem, we need the following two lemmas.
We prove them in Sections 4 and 5.

Lemma 1. Consider Ω ⊂ C a simply connected domain with {β1,
. . . , β2σ+1} ⊂ Ω, D = z−1(Ω) and F : D → R

3 a minimal immer-
sion whose Weierstrass representation Φ satisfies A∗(Φ) = −Φ, i.e.,
Φ3 = ϕ3(z)dzw and g = G(z). Then for any K1, K2 disjoint compact

1-connected sets of C with β1, . . . , β2σ+1 ∈
◦
K2, and any α > 0, there

exists h : Ω→ C, a holomorphic function without zeroes, such that:

1. |h− α| < 1/α in K1.

2. |h− 1| < 1/α in K2.

3. The minimal immersion F̃ : D → R
3 with Weierstrass represen-

tation Φ̃ given by g̃ = g/h and Φ̃3 = Φ3 is well defined.

Lemma 2. Let P be a polygon on C satisfying {β1, . . . , β2σ+1} ⊂
Int(P ) and let r > 0. Consider D = z−1(Int(P )) and X : D → R

3 a
minimal immersion satisfying:

1. X = Re
(∫

p0

Φ
)

, where p0 = (β1, 0) and A∗Φ = −Φ.

2. ‖X‖ < r in D.

Then, for any ε, s > 0 such that {β1, . . . , β2σ+1} ⊂ Int(P ε), there exist
a polygon P̃ and a conformal minimal immersion Y : D̃ → R

3, D̃ =
z−1(Int(P̃ )) such that:

1. Int(P ε) ⊂ Int P̃ ⊂ Int P̃ ⊂ Int(P ).

2. Y = Re
(∫

p0

Φ̃
)

, where Φ̃ satisfies A∗(Φ̃) = −Φ̃.

3. dist
(Y,D̃)

(∂(D̃), ∂(Dε)) > s.

4. Y (D̃) ⊂ BR, R =
√

r2 + (2s)2 + ε.

5. ‖Y −X‖ < ε in Dε.

At this point, we state and prove our main result.
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Theorem 1. There exist a simply connected domain Σ ⊂ C con-
taining {β1, . . . , β2σ+1} and a complete bounded minimal immersion
X : S = z−1(Σ)→ R

3.

Proof. Let r1 > 1 and ρ1 > 0 to be specified later, and define
rn =

√
r2n−1 + (2/n)2 + 1/n2, and ρn = ρ1 +

∑n
i=2 1/i, n ≥ 2. Our

strategy consists of using Lemma 2 to define a sequence:

χn = (Xn : Dn → R
3, Pn, εn, ξn),

whereXn is a conformal minimal immersion, Dn = z−1(Int(Pn)), Pn is a
polygon enclosing {β1, . . . , β2σ+1}, {εn}, {ξn} are decreasing sequences
of nonvanishing terms satisfying εn, ξn < 1/n2, and:

(An) ρn < dist
(Xn,D

ξn
n )

(p0, ∂(D
ξn
n )).

(Bn) Xn(Dn) ⊂ Brn .

(Cn) Xn(p) = Re
(∫ p

p0

Φn
)

, where A∗(Φn) = −Φn.

(Dn) ‖Xn −Xn−1‖ < εn in D
ξn−1

n−1 .

(En) λXn ≥ αnλXn−1 in D
ξn−1

n−1 , where {αi}i∈N is a sequence of real num-
bers such that 0 < αi < 1 and {∏ni=1 αi}n converges to 1/2.

(Fn) Int(P ξn−1

n−1 ) ⊂ Int(P ξnn ) ⊂ Int(Pn) ⊂ Int(Pn−1).

The choice of the first element of the sequence is not difficult. For
instance, and just for completeness, we suggest the following. Take
M =

{
(z, w) ∈ C

2
w2 = (z − 2)2σ+1 + 1

}
, g1 = (z − 2)2σ+1, Φ13 =

(z−2)4σ+1 dzw . Let P1 be a polygon enclosing the zeroes {β1, . . . , β2σ+1}
of (z−2)2σ+1+1, but leaving 2 in the exterior domain. Note that Φ1 is
exact. So, if D1

def= z−1(Int(P1)) then X1(p) = Re
(∫ p
p0
Φ1
)
, p ∈ D1, is

well defined. Finally, we choose ρ1 < dist(X1,D1)
(p0, ∂(D1)) and r1 > 1

such that X1(D1) ⊂ Br1 . We also choose ξ1 < 1 small enough satisfying
(A1). The choice of ε1 < 1 is irrelevant.

Suppose that we have χ1, . . . , χn. Now, we construct the (n+ 1)-th
term.
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Take a sequence {ε̂m} ↘ 0, with ε̂m < 1
(n+1)2

, ∀m. For each m, we

consider Ym : D̃m → R
3 and P̃m given by Lemma 2, for the data:

X = Xn, P = Pn, r = rn, s = 1/(n+ 1), ε = ε̂m.

If m is large enough, Assertions 1 and 5 in Lemma 2 tell us that
Dξnn ⊂ D̃m and the sequence {Ym} converges to Xn uniformly in Dξnn . In

particular, {λYm} converges uniformly to λXn in Dξnn . Therefore there
is a m0 ∈ N such that:

Dξnn ⊂ D
ε̂m0
n ⊂ D̃m0 ,(2)

ρn < dist
(Ym0 ,D

ξn
n )

(p0, ∂(Dξnn )),(3)

λYm0
≥ αn+1λXn in Dξnn .(4)

We define Xn+1 = Ym0 , Pn+1 = P̃m0 , and εn+1 = ε̂m0 . From (2),
(3) and Assertion 3 in Lemma 2, it is not hard to see that ρn+1 <
dist(Xn+1,Dn+1)

(p0, ∂(Dn+1)). Finally, take ξn+1 small enough such that
(An+1) and (Fn+1) hold. The remaining properties directly follow from
(2), (4) and the aforementioned lemma. This concludes the construction
of the sequence {χn}n∈N.

Now, we define

Σ =
∞⋃
n=1

Int(P ξnn ).

Σ is a simply connected domain in C containing {β1, . . . , β2σ+1}. Label
S = z−1(Σ).

Properties (Dn) and the fact that εn < 1/n2 give us that the se-
quence of minimal immersion {Xn} is a Cauchy sequence, uniformly on
compact sets of S, and so {Xn} converges.

LetX : S → R
3 be the limit of {Xn}. X has the following properties:

• X is an immersion. Indeed, for any p ∈ S there exists n ∈ N such
that p ∈ Dξnn . From Properties (Ei), i = k, . . . , n+ 1 we get:

λXk
(p) ≥ αkλXk−1

(p) ≥ · · · ≥ αk . . . αn+1λXn(p)
≥ αk . . . α1λXn(p), ∀k > n.

Taking limit as k →∞, we deduce:

λX(p) ≥ 1
2
λXn(p) > 0,(5)

and so X is an immersion.
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• X is minimal and conformal.

• X(S) is bounded in R
3. Let p ∈ S and n ∈ N such that p ∈ Dξnn ,

then

‖X(p)‖ ≤ ‖X(p)−Xn(p)‖+ ‖Xn(p)‖ ≤ 1
2
+ rn,

for an n large enough. From the definition, the sequence {rn} is
bounded in R.

• The surface S is complete with the metric induced by X. Indeed,
if n is large enough, and taking (5) and (An) into account, one
has:

dist
(X,Dξn

n )
(p0, ∂Dξnn ) >

1
2
dist

(Xn,D
ξn
n )

(p0, ∂Dξnn ) >
1
2
ρn.

The completeness is due to the fact that {ρn}n∈N diverges.

This concludes the proof. q.e.d.

4. Proof of Lemma 1

Lemma 1 tells us that the set of funtions given by Runge’s theo-
rem on M is large enough to provide us with a solution to our period
problem.

The proof of this lemma requires of several claims about meromor-
phic one forms on the surface M .

Along this section, B = {γ1, γ2, . . . , γ2σ} will represent a basis of
the homology of M contained in z−1(K2). In Figure 1 you can see the
z-projection of γi, that we have called δi, i = 1, . . . , 2σ. Note that B is
also an homology basis of M .

Let us define H∞ as the complex vector space of the meromorphic
1-forms τ on M with poles only at∞, and satisfying τ = −A∗τ . Notice
that a nonexact element of H∞ has the form P (z)dzw , where P (z) is a
non-null polynomial.

Claim 1. Consider (a1, . . . , a2σ) ∈ C
2σ − {(0, . . . , 0)} and c =∑2σ

j=1 ajγj. Then there exists τ ∈ H∞ satisfying
∫
c τ �= 0.

Proof. As a consequence of Riemann-Roch theorem, the first holo-
morphic De Rham cohomology group, H1

hol(M), is generated by

V =
{[

zj−1
dz

w

]
, j = 1, . . . , 2σ

}
.
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Figure 1: Curves δ1, δ2, . . . , δ2σ.

See [1] for the details. Therefore, the map I : H1
hol(M) −→ C

2σ, given

by I([ψ]) =
(∫
γj

ψ
)
j=1,...,2σ

is a linear isomorphism. Thus, there is [ψ] ∈
H1
hol(M) such that I([ψ]) �∈

{
(z1, . . . z2σ) ∈ C

2σ :
∑2σ
j=1 ajzj = 0

}
. As

V is a basis of H1
hol(M), there is τ ∈ H∞ ∩ [ψ], and so,

∫
c τ �= 0. This

proves the claim. q.e.d.

Furthermore, we are interested in controling the zeroes of the one-
form τ given in the above claim. This is possible thanks to the next
result.

Claim 2. Let τ be a meromorphic 1-form in H∞ and p ∈M . Then
there is a meromorphic function H : M → C satisfying:

(i) H ◦A = −H.

(ii) (H)∞ =∞k, k ∈ N.

(iii) (τ + dH)0 ≥ (τ)0 · p ·A(p).

Proof. We know that τ = P (z)dzw , where P (z) is a polynomial. Write
(τ)0 = pn(p) ·A(p)n(p) ·D, where D is an integral divisor not containing
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either p or A(p). Define

J =


P (z)2

(z−z(p))n(p)−1w, p �= A(p)

P (z)2

(z−z(p))n(p)w, p = A(p).

Notice that J satisfies (i) and (ii). Moreover (J)0 ≥ pn(p)+1 ·A(p)n(p)+1 ·
D2. As the order of p (and A(p)) as zero of d(J) and τ is the same,
then there exists λ ∈ C such that (τ + λdJ)0 ≥ pn(p)+1 ·A(p)n(p)+1 ·D.
This concludes the claim. q.e.d.

Claim 3. Let H
(
Ω
)

be the real vector space of the holomorphic
functions on Ω. Then the linear map F : H

(
Ω
)→ R

4σ, given by:

F (t) =

(
Re

[∫
γj

t Φ3

(
1
g
+ g

)]
j=1,...,2σ

,

Im

[∫
γj

t Φ3

(
1
g
− g

)]
j=1,...,2σ

)
is surjective.

Proof. We proceed by contradiction. Assume F is not onto. Then,
there is (µ1, . . . , µ4σ) ∈ R

4σ − {(0, . . . , 0)}, such that F (H
(
Ω
)
) ⊆

{(x1, . . . , x4σ) ∈ R
4σ /

∑4σ
j=1 µjxj = 0}. This is equivalent to say

that
2σ∑
j=1

[
uj

∫
γj

t

g
Φ3 + uj

∫
γj

tgΦ3

]
= 0 ∀t ∈ H

(
Ω
)
,(6)

where uj = µj − iµ2σ+j , j = 1, . . . , 2σ.
Claims 1 and 2 guarantee the existence of a differential τ ∈ H∞

satisfying:

(i) (τ)0 ≥
(
(1gΦ3)|Ω

)
0

2 (
(g dg)|Ω

)
0
.

(ii)
∑2σ
j=1 uj

∫
γj

τ �= 0.

If we define f
def= τ

2 g dg , then t = g d(f)
Φ3

belongs to H
(
Ω
)
. In this case,

and integrating by parts, (6) becomes
2σ∑
j=1

uj

∫
γj

tgΦ3 = −
2σ∑
j=1

uj

∫
γj

τ = 0,
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which is absurd. This contradiction proves the claim. q.e.d.

Using the above claim we have the existence of {t1, . . . , t4σ} ⊂ H
(
Ω
)

such that det(F (t1), . . . , F (t4σ)) �= 0. Up to changing ti ↔ ti/x, x > 0
large enough, we can assume that∣∣∣∣∣exp

(
4σ∑
i=1

xiti(z)

)
− 1

∣∣∣∣∣ < 1/(2α),(7)

∀(x1, . . . , x4σ) ∈ R
4σ, |xi| < 1, i = 1, . . . , 4σ, ∀z ∈ Ω.

Given n ∈ N, we apply Runge’s theorem and obtain a holomorphic
function tn0 : Ω→ C satisfying:

• |tn0 − n| < 1/n in K1.

• |tn0 | < 1/n in K2.

For Θ = (λ0, . . . , λ4σ) ∈ R
4σ+1, we define

hΘ,n(z) def= exp

λ0 tn0 (z) + 4σ∑
j=1

λj tj(z)

 , ∀z ∈ Ω.

Label gΘ,n = g/hΘ,n and ΦΘ,n3 = Φ3. As
{
tn0 |K2

}
n∈N

is uniformly

bounded, then, up to a subsequence, we have
{
tn0 |K2

}
→ t∞0 ≡ 0, uni-

formly on K2. We also define on K2 the following Weierstrass data
gΘ,∞ = g/hΘ,∞, ΦΘ,∞3 = Φ3, where

hΘ,∞(z) def= exp

 4σ∑
j=1

λj tj(z)

 , ∀z ∈ K2.

The period problems of all these Weierstrass representations are not
solved, except for the third coordinates.

Therefore, we have to deal with the periods of ΦΘ,nj , j = 1, 2. To do
this, we define the map Pn : R

4σ+1 → R
4σ, n ∈ N ∪ {∞};

Pn(Θ) =
Re[∫

γj

ΦΘ,n1

]
j=1,...,2σ

,Re

[∫
γj

ΦΘ,n2

]
j=1,...,2σ

 .
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Since the immersion X is well defined, then one has Pn(0, (4σ + 1). . . , 0) = 0,
∀n ∈ N ∪ {∞}. Moreover, it is not hard to check that

Jacλ1,...,λ4σ(Pn)(0, (4σ + 1). . . , 0) = det(F (t1), . . . , F (t2σ)) �= 0,
∀n ∈ N ∪ {∞}.

So, we can find ε > 0 and 1 > r > 0 such that

• (Jacλ1,...,λ4σ(P∞))|[−ε,ε ]×B(0,r) �= 0;

• the map P∞(0, ·)|B(0,r) is injective,

where B(0, r) = {Λ ∈ R
4σ / ‖Λ‖ ≤ r}.

As {tn0}n∈N uniformly converges to t∞0 ≡ 0 on K2 and δi = z(γi)
is contained in K2, i = 1, . . . , 2σ, then it is not hard to see that
{Jacλ1,...,λ4σ(Pn)}n∈N uniformly converges to Jacλ1,...,λ4σ(P∞) on [−ε, ε ]
×B(0, r). Therefore, there exists n0 ∈ N such that

Jacλ1,...,λ4σ(Pn)(λ0,Λ) �= 0, ∀(λ0,Λ) ∈ [−ε, ε]×B(0, r), n ≥ n0.

At this point we can apply the Implicit Function Theorem to the
map Pn at (0, (4σ + 1). . . , 0) ∈ [−ε, ε ] × B(0, r), in order to get a smooth
function Ln : In → R

4σ, satisfying Pn(λ0, Ln(λ0)) = 0, ∀λ0 ∈ In, where
In is an open interval containing 0. We can also assume that In is
maximal, in the sense that Ln can not be regularly extended beyond In.

Label εn as the supremum of the connected component of
L−1
n (B(0, r)) ∩ [0, ε] that constains λ0 = 0. Our next step consists of

seeing that εn ∈ In. Take a sequence {λk0}k∈N ↗ εn. As {Ln(λk0)} ⊂
B(0, r), then we can assume, up to a subsequence, that {Ln(λk0)}k∈N

converges to an element Λn ∈ B(0, r). Taking into account that
Jacλ1,...,λ4σ(Pn)(εn,Λn) �= 0, the local unicity of the curve (λ0, Ln(λ0))
around the point (εn,Λn), and that In is maximal, we deduce that
εn ∈ In. Therefore, either εn = ε, or Ln(εn) = Λn ∈ ∂(B(0, r)).

We are going to see that ε0
def= lim inf{εn} > 0. Otherwise, there

is a subsequence {εn} → 0. Without loss of generality, εn < ε, ∀n ∈
N, and so Λn ∈ ∂(B(0, r)), ∀n ∈ N. Up to a subsequence, {Λn} →
Λ∞ ∈ ∂(B(0, r)). The fact P∞(0, 0) = P∞(0,Λ∞) = 0 contradicts the
injectivity of P∞(0, ·) in B(0, r).

We have proved the following assertion:

Claim 4. There exist ε0 > 0 and n0 ∈ N such that the function
Ln : [0, ε0]→ B(0, r) is well defined, ∀n ≥ n0.
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Label (λn1 , . . . , λ
n
4σ) = Ln(ε0). From (7) we have | exp[∑4σ

j=1 λ
n
j tj ] −

1| < 1/(2α) on Ω. Hence, if n ≥ n0 is large enough, the function:

h(z) def= exp

ε0 tn0 (z) + 4σ∑
j=1

λnj tj(z)


satisfies Statements 1 and 2 in Lemma 1. As the period function Pn
vanishes at Θn = (ε0, λn1 , . . . , λ

n
4σ), then the minimal immersion F̃ asso-

ciated to the Weierstrass data gΘn,n, ΦΘn,n
3 = Φ3 is well defined. This

proves Statement 3 in the lemma.

5. Proof of Lemma 2

Consider P , the polygon given in the statement of Lemma 2. In a
first step, we are going to follow [4] to describe a labyrinth on Int(P )
depending on P and a positive integer N . Later, we use Lemma 1
following Nadirashvili’s ideas [5].

Let > be the number of sides of P . Throughout this section, N will
be a positive multiple of >.

Remark 1. Along the proof of the lemma, a set of real positive
constants {ci, i = 1, . . . , 12} depending on X,P , r, ε, and s will appear.
It is important to note that the choice of these constants does not depend
on the integer N .

Let ζ0 > 0 small enough so that P ζ0 is well defined and Int(P ε) ⊂
Int(P ζ0). From now on, we will only considerN ∈ N such that 2/N < ζ0.
Let c1 be a lower bound for the length of the sides of polygon P ζ for all
ζ ≤ ζ0. Let v1, . . . , v2N be a set of points in the polygon P (containing
the vertices of P ) that divide each side of P into 2N! equal parts. We can
transfer this partition to the polygon P 2/N : v′1, . . . , v′2N (see Figure 2).
We define the following sets:

• Li = the segment that joins vi and v′i, i = 1, . . . , 2N .

• Pi = P i/N
3
, i = 0, . . . , 2N2.

• A =
⋃N2−1
i=0 Int(P2i) \ Int(P2i+1) and

Ã =
⋃N2

i=1 Int(P2i−1) \ Int(P2i).

• R =
⋃2N2

i=0 Pi.



adding handles to nadirashvili’s surfaces 167

• B =
⋃N
i=1 L2i and B̃ =

⋃N−1
i=0 L2i+1.

• L = B ∩ A, L̃ = B̃ ∩ Ã, and H = R∪ L ∪ L̃.

• ΩN =
{
z ∈ Int(P0) \ Int(P2N2) : distds0,C(z,H) ≥ 1

4N3

}
, where ds0

is the Euclidean metric on C.

We define ωi as the union of the segment Li and those connected compo-
nents of ΩN that have nonempty intersection with Li for i = 1, . . . , 2N .
Finally, we label Ai = {z ∈ C : distds0,C(z, ωi) < δ(N)}, where i =
1, . . . , 2N , and δ(N) > 0 is chosen in such a way that the sets Ai
(i = 1, . . . , N) are pairwise disjoint (see Figure 3). We denote A1i and
A2i as the two connected component of z−1(Ai).

The aim of all this construction is to guarantee the following claims
for an N large enough.

Claim A There is a constant c2 such that diamds(A
j
i ) ≤ c2/N ,

where ds2 is the Riemannian metric ‖dz/w‖2 on M .

To see this, observe that diamds0(Ai) ≤ const
N . As we can find a

positive constant c3 such that

1
c3

∥∥∥∥dzw
∥∥∥∥ ≤ ‖dz‖ ≤ c3

∥∥∥∥dzw
∥∥∥∥ in D \Dε(8)

and we have z−1(Ai) ⊂ D \Dε for all i = 1, . . . , 2N , the claim holds.

Claim B If λ2(z)ds2 is a conformal metric in D and Υ ∈ R
+ sat-

isfies

λ(z) ≥
{
Υ in IntP,
Υ N4 in ΩN ,

and if α is a curve in D connecting ∂(Dε) and ∂(D), then the length of
α with this metric is greater than c4ΥN , where c4 is a positive constant
not depending on Υ.

In order to prove Claim B, if we denote (z ◦ α)i as the piece of
z ◦ α connecting P2i with P2i+2, for i = 0, . . . , N2 − 1, then either the
Euclidean length of (z ◦ α)i is greater than c1!

2N or the Euclidean length
of (z ◦α)i∩ΩN is greater than 1

2N3 . These facts and inequalities (8) give
us the existence of the constant c4.

Now, our purpose is to construct (for N large enough) a sequence of
conformal minimal immersions Fi, i = 0, 1, . . . , 2N, in D, F0 = X, such
that:
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Figure 2: The polygons P and P 2/N .

Figure 3: Distribution of the sets Aji .
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(P1i) Fi(p) = Re
(∫ p
p0
Φi
)
, where A∗(Φi) = −Φi, i.e.,

Φi = (ϕi1(z), ϕ
i
2(z), ϕ

i
3(z))

dz
w .

(P2i) ‖ϕi(z)− ϕi−1(z)‖ ≤ 1/N2 for all z ∈ Int(P ) \Ai.

(P3i) ‖ϕi(z)‖ ≥ N7/2 for all z ∈ ωi.

(P4i) ‖ϕi(z)‖ ≥ 1/
√
N for all z ∈ Ai.

(P5i) dist(ds1,S2)(Gi(z),Gi−1(z)) < 1
N
√
N

for all z ∈ Int(P ) \ Ai, where
ds1 is the usual Riemannian metric in S

2 and Gi represents the
Gauss map of the immersion Fi.

(P6i) there exists a orthogonal frame Si = {e1, e2, e3} in R
3 and a real

constant c5 > 0 such that:

(P6.1i) If p ∈ z−1(Ai) and ‖Fi−1(p)‖ ≥ 1/
√
N , then

‖((Fi−1(p))1, (Fi−1(p))2)‖ <
c5√
N
‖Fi−1(p)‖.

(P6.2i) (Fi(p))3 = (Fi−1(p))3 for all p ∈ D.

Here, (·)k is the k-th coordinate function with respect to {e1, e2,
e3}.

Suppose that we have F0, . . . , Fj−1 verifying the claims (P1i), . . . , (P6i),
i = 1, . . . , j − 1. Then, for an N large enough, there are positive
constants c6, . . . , c9 such that the following statments hold:

(L1) ‖ϕj−1‖ ≤ c6 in Int(P ) \⋃j−1k=1Ak.

This follows easily from (P2l) for l = 1, . . . , j − 1.

(L2) ‖ϕj−1‖ ≥ c7 in Int(P ) \⋃j−1k=1Ak.

To obtain this property, it suffices to apply (P2l) for l = 1, . . . , j−1
once again.

(L3) The diameter in R
3 of Fj−1(Alj) is less than c8/N , l = 1, 2.

This is a consequence of (L1), the bound of diamds(Alj) in Claim A,
and equality (1).
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(L4) The diameter in S
2 of Gj−1(z−1(Aj)) is less than c9/

√
N .

Indeed, since diamds0(Aj) ≤ const
N , we have a bound of diameter of

G0(z−1(Aj)). From successive applications of (P5l) we have that
(L4) holds.

We shall now construct Fj . We look for a set of orthogonal coordinates
Sj = {e1, e2, e3} in R

3 and a constant c10 > 0 such that:

(D1) If p ∈ z−1(Aj) and ‖Fj−1(p)‖ ≥ 1√
N
, then min{∠(e3, Fj−1(p)),

∠(−e3, Fj−1(p))} ≤ c10√
N
.

(D2) ∠(±e3,Gj−1(z)) ≥ ν/
√
N for all z ∈ Aj .

Here, ∠(a, b) ∈ [0, π[ is the angle formed by a and b in R
3 and ν is a

constant satisfying ν > 1/c7. Given q ∈ S
2, we denote

Con(q, r) = {x ∈ S
2 : ∠(x, q) ≤ r}.

Let g0 ∈ Gj−1(Aj). Taking (L4) into account, the condition (D2) holds
if e3 is chosen in S

2 \ C, where

C = Con
(
g0,

c9 + ν√
N

)
∪ Con

(
−g0,

c9 + ν√
N

)
.

The next step is to find e3 ∈ S
2 \C satisfying (D1) for a suitable c10 > 0.

To do this, we define

F =
{
p/‖p‖ : p ∈ Fj−1(A1j ) and ‖p‖ ≥

1√
N

}
.

Let q a point in F . Taking into account (L3), we have that F ⊂
Con

(
q, 2c8√

N

)
. Choose c10 such that 2(c9+ν+1+c8) < c10, and consider

e3 ∈ (S2 \C)∩ Con(q, c9+ν+1√
N

). To check property (D1), we take p ∈ A1j

verifying ‖Fj−1(p)‖ ≥ 1/
√
N , then a straightforward computation leads

to

∠(e3, p) ≤ ∠(e3, q) + ∠(q, p) ≤ 2(c9 + ν + 1)√
N

+
2c8√
N

<
c10√
N

.

Thank to Fj−1 ◦ A = −Fj−1, we have ∠(−e3, p) < c10√
N

for all p ∈ A2j ,
(A2j = A(A1j )).
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Finally, we take e1, e2 such that Sj = {e1, e2, e3} is a set of orthog-
onal coordinates in R

3.
Let (Φj−13 , gj−1) be the Weierstrass data of the immersion Fj−1 in

the coordinate system Sj . Let hα be the function given by Lemma 1, for
K1 = ωj , K2 = Int(P )\Aj and α large enough in terms of N . We define
Φj3 = Φj−13 and gj = gj−1/hα. Lemma 1 also tell us that the Weierstrass
data Φj has no real periods. Therefore, the minimal immersion Fj is
well-defined and its expression in the set of coordinates Sj is

Fj(p) = Re
(∫ p

p0

ϕj(z)
dz

w

)
.

We shall now see that Fj satisfies the properties (P1j),. . . ,(P6j).
(Note that claims (P1j),. . . ,(P6j) do not depend on changes of coordi-
nates in R

3). Claim (P1j) easily holds.
Note that hα → 1 (resp. hα → ∞) uniformly on K2 (resp. on K1),

as α→∞. Then (P2j), (P3j), and (P5j) easily hold for α large enough.
To verify (P4j), one uses (D2) and obtains:

sin(ν/
√
N)

1 + cos(ν/
√
N)
≤ |gj−1| ≤ sin(ν/

√
N)

1− cos(ν/
√
N)

in Aj ,

and so, taking (L2) into account one has:

‖ϕj‖ ≥ |ϕj3| = |ϕj−13 | ≥
√
2‖ϕj−1‖ |gj−1|

1 + |gj−1|2
≥ c7 sin

(
ν√
N

)
≥ 1√

N
in Aj

for N large enough, which proves (P4j).
Using (D1), we get (P6.1j) for c5 = c10. To obtain (P6.2j), use that

Φj−13 = Φj3 in the frame Sj .
Hence, we have constructed the immersions F0, F1, . . . , F2N satisfy-

ing claims (P1j),. . . ,(P6j) for j = 1, . . . , 2N .
Lemma 2 is a consequence of the following proposition.

Proposition 1. If N is large enough, then F2N satisfies:

(i) 2 s < dist(F2N ,D)
(∂(D), ∂(Dε)).

(ii) There is a constant c11 > 0 such that ‖Fj(p)−Fj−1(p)‖ ≤ c11
N2 in D\

z−1(Aj).
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(iii) ‖F2N −X‖ ≤ 2c11
N in D \⋃2Nj=1 (z−1(Aj)).

(iv) There is a polygon P̃ satisfying:

(iv.1) Int(P ε) ⊂ Int(P̃ ) ⊂ Int(P̃ ) ⊂ Int(P ).

(iv.2) s < dist
(F2N ,D̃)

(p, ∂(Dε)) < 2 s, ∀p ∈ ∂(D̃), where D̃ =

z−1
(
Int(P̃ )

)
.

(iv.3) F2N (D̃) ⊂ BR, where R =
√

r2 + (2s)2 + ε.

Proof. If λ2F2N
(z)‖dzw ‖2 is the conformal metric induced on D by the

immersion F2N , then Property (L2) implies

λF2N
(z) =

‖ϕ2N (z)‖√
2

≥ c7√
2
>

1
2
√
N

in Int(P ) \
2N⋃
k=1

Ak,(9)

for N large enough. Taking into account (P4j) and (P2i) for i = j +
1, . . . , 2N , we have

λF2N
(z) ≥ ‖ϕ

j(z)‖ − ‖ϕ2N (z)− ϕj(z)‖√
2

(10)

≥ 1√
2

(
1√
N
− 2

N

)
≥ 1

2
√
N

in each Aj .

From (P3j) and (P2i) for i = j + 1, . . . , 2N , we obtain

λF2N
(z) ≥ ‖ϕ

j(z)‖ − ‖ϕ2N (z)− ϕj(z)‖√
2

(11)

≥ 1√
2

(
N7/2 − 2

N

)
≥ 1

2
√
N

N4 in each ωj .

Using inequalities (9), (10), and (11) together with Claim B, for Υ =
1/(2

√
N), we conclude the proof of assertion (i).

Now we shall prove (ii). Note that the set Aj depends on N , and
label ΞjN = D − z−1(Aj). It is not hard to see that there exists c11
depending only on D such that

sup
{
dist

(ds,Ξj
N )
(p0, p) : N ∈ N, j ∈ {1, . . . , 2N}, p ∈ ΞjN

}
≤ c11.
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Therefore, for all p ∈ ΞjN , there exists a curve αp in ΞjN , from p0 to
p satisfying length(αp, ds) < c11. Using the former, we obtain

‖Fj(p)− Fj−1(p)‖ =
∥∥∥∥∥Re

∫
αp

(ϕj(z)− ϕj−1(z))
dz

w

∥∥∥∥∥ ≤ c11
1
N2

,

which proves assertion (ii). From (ii), it is not hard to deduce (iii).
We will construct the polygon P̃ . Let

S =
{
p ∈ D \Dε : s < dist(F2N ,D)

(p, ∂(Dε)) < 2 s
}
.

Note that S is a nonempty open subset ofD\Dε. As a consequence of
(i), we deduce that z(S) contains a Jordan curve, Γ verifying Int(P ε) ⊂
Int(Γ). Then we can aproximate Γ by a polygon P̃ ⊂ z(S) satisfying
statments (iv.1) and (iv.2).

Finally, we prove assertion (iv.3). Thanks to the Maximum Princi-
ple, we only need to check that F2N (∂(D̃)) ⊂ BR. Take p ∈ ∂(D̃). If
p ∈ D \⋃2Nj=1 z−1(Aj), we have

‖F2N (p)‖ ≤ ‖F2N (p)−X(p)‖+ ‖X(p)‖ ≤ 2c11
N

+ r ≤ R.

Suppose now p ∈ z−1(Aj), j ∈ {1, . . . , 2N}. From (iv.2), it is possible
to find a curve γ : [0, 1] → D such that γ(0) ∈ ∂(Dε), γ(1) = p, and
length(γ, dsF2N

) ≤ 2 s. We define:

t = sup{t ∈ [0, 1] : γ(t) ∈ ∂(z−1(Aj))}, p = γ(t).

Let γ1 be the piece of γ from p to p.
To continue, we need to demonstrate:

‖Fj(p)− Fj(p)‖ ≤ 4
c11
N

+ 2s.(12)

Indeed,

‖Fj(p)− Fj(p)‖
≤ ‖Fj(p)− F2N (p)‖+ ‖F2N (p)− F2N (p)‖+ ‖F2N (p)− Fj(p)‖

using (ii), we have

≤ 2
2 c11
N

+ ‖F2N (p)− F2N (p)‖
≤ 4

c11
N

+ length(γ1, dsF2N
) ≤ 4

c11
N

+ 2 s.

At this point, we distinguish two cases.
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• Case 1: ‖Fj−1(p)‖ < 1/
√
N . Then

‖F2N (p)‖ ≤ ‖F2N (p)− Fj(p)‖+ ‖Fj(p) + Fj(p)‖
+ ‖Fj(p)− Fj−1(p)‖+ ‖Fj−1(p)‖

≤ 2c11
N

+ 4
c11
N

+ 2s+
c11
N2

+
1√
N
≤ R

for an N large enough.

• Case 2: ‖Fj−1(p)‖ > 1/
√
N . In this case, from (P6.2j) we have,

in the frame Sj ,

|(Fj(p))3| = |(Fj−1(p))3|
≤ |(Fj−1(p))3 − (X(p))3|+ |(X(p))3|
≤ 2c11

N
+ r.

Using inequality (12), the fact that p ∈ D\z−1(Aj), assertion (ii),
and property (P6.1j), one has

‖((Fj(p))1, (Fj(p))2)‖
≤ ‖((Fj(p))1, (Fj(p))2)− ((Fj(p))1, (Fj(p))2)‖
+ ‖((Fj(p))1, (Fj(p))2)− ((Fj−1(p))1, (Fj−1(p))2)‖
+ ‖((Fj−1(p))1, (Fj−1(p))2)‖

≤ 4
c11
N

+ 2s+
c11
N2

+
c5√
N
‖Fj−1(p)‖

≤ 4
c11
N

+ 2s+
c11
N2

+
c5√
N

(
2c11
N

+ r

)
≤ 2s+

c12√
N

,

where c12 = 5 c11 + c5(2c11 + r). By Pythagoras’ theorem,

‖F2N (p)‖ ≤ ‖F2N (p)− Fj(p)‖+ ‖Fj(p)‖
≤ 2c11

N
+
√
|(Fj(p))3|2 + ‖((Fj(p))1, (Fj(p))2)‖2

<
√

r2 + (2s)2 + ε = R

for an N large enough.

q.e.d.

In order to finish the proof of the lemma, we define Y as Y = F2N .
It is straightforward to check that Y verifies all the claims in Lemma 2.
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Remark 2. Nadirashvili’s construction provides an example of a
complete bounded minimal surface with strictly negative Gauss curva-
ture, which gives a counter example to a conjecture by Hadamard. The
method of construction that we use here never provides surfaces with
strictly negative curvature. This is due to the fact that our Weierstrass
representations always satisfy A∗(Φ) = −Φ. In particular, the Gauss
map g only depends on z, and so it has branch points at {(β1, 0), . . . ,
(β2σ+1, 0)}.

The authors think that a method of obtaining examples with K <
0 and nontrivial topology should be very different to that shown in
this article. We would like to thank the referee for pointing out this
possibility.
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